Continuing from yesterday’s figure (20161214), for each node in the denoising tree we plot the means and correlation matrices.
require(meda)
source("~/neurodata/synaptome-stats/Code/doidt.r")
load('~/neurodata/synaptome-stats/Code/cleanDataWithAttributes.RData')
load("~/neurodata/FOTD/code/IDTrun20161214_2.RData")
idtlab <- out$class
idtall <- out$idtall
leaves <- which(sapply(idtall, function(x) x$isLeaf))
bn <- sapply(idtall, '[[', 2)
obn <- order(bn)
set.seed(317)
half1 <- sample(dim(data01)[1],dim(data01)[1]/2)
half2 <- setdiff(1:dim(data01)[1],half1)
feat <- data01[half1,]
feat2 <- data01[half2,]
#set.seed(2^10)
set.seed(317)
ss <- sample(dim(data01)[1],10000)
D1 <- data01[ss, 1:24, with = FALSE]
Y <- lapply(obn, function(x){
y <- idtall[[x]]$ids
dat <- D1[y,]
# dat <- X[y,]
me <- apply(dat, 2, mean)
covM <- cov(dat)
corM <- cor(dat)
list(means = me, covmat = as.matrix(covM), cormat = as.matrix(corM), bn=bn[x], dat = dat)
})
CovM <- lapply(Y, function(x) x$covmat)
CorM <- lapply(Y, function(x) x$cormat)
Means for each node in the tree
mycol <- colorpanel(100, "black", "pink")
me <- lapply(Y, function(x) apply(x$dat, 2, mean))
me <- Reduce(rbind, me)
rownames(me) <- sort(bn)
heatmap.2(as.matrix(me),dendrogram='none',
Colv=FALSE,Rowv=FALSE, trace="none", key= FALSE,
col=mycol, cexRow=0.8, keysize=1.25,
symkey=FALSE,symbreaks=FALSE,
scale="none", srtCol=60)
Correlation matrices for each node in the tree.
par(mfrow = c(4,2))
N <- lapply(c(1,1,2,5,3,6,4,7),function(x) {
corrplot(CorM[[x]], method = "color", is.corr = TRUE)
title(bn[obn[x]])
})